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Mechanical systems under the action of positional forces or a 
combination of positional forces and forces of the type of fourth-order 
forms with respect to the velocities (non-holonomic Chaplygin systems) 
as well as non-holononic systems where there are no dissipative forces, 
belong to systems with a linear automorphism of a special type. In the 
case of such systems, stability of the equilibrium positions is only 
possible in the critical case of Some zero and purely imaginary roots; 
asymptotic stability is impossible when there are zero roots. In the 
non-resonant case there is formal stability and a family of periodic 
motions exists similar to a Lyapunov family in the case of Hamiltonian 
systems and a family of conditionally periodic motions with a set of 
frequencies which are proportional to the frequencies of a linear 
system. The problem of the stability in the case of the lower (third 
and fourth) order resonances is solved. Examples are considered. 

1. Revepstile systems kth a linear automorphism. The system 

x*'=A,x,+X,(x,), X,(O)=@ x,,X,ER' (1.1) 

6% is a constant (s X s) matrix) with a linear automorphism M: 

MA*=-AA,M, MX,(x,)=-X, (Mx,), MZ=E 

(E is the unit matrix) is considered. This system is a special case of a system which is 
reversible in the sense of Birkhoff /l/ and has been investigated by Moser /2/. 

The characteristicequationof the linear approximation detl) A, - hE 11 = 0 contains 
a root --h together with the root h. 

Actually, 

Such s system can therefore only be stable in the critical case of zero and purely 
imaginary xoots. Let there be m zero and n pairs of purely imaginary roots and, moreover, 
let all the elementary divisors be simple. Then, using the non-degenerate transformation 
+=Py*, we reduce system (1.1) to the form 

where f is a real m-vector and q and ii are complex-conjugate n-vectors. System (1.2) 
has the linear automorphism M, = P-IMP, Me2 = E /3/. The linear part of system (1.2) is 
invariant under the substitutions: 1) t+ --t, x-+ t,rl+?j,q--+R and 2) 
%k + Er. Es+2 -+ -%k+z, . . . t %m + -%m, q -+ il, q +g. 

t-+ 4, g,-+ 51, . . -9 
Hence, the automorphism Me may be of the 

form 

E, 0 0 0 

and 

where E, is a unit j-matrix. 

&Cimp~e 1 /2/. The system 
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y’= Y(y,s), E’ = Z(y,z); > oR', z E RT' (I.>%) 

y (y* ---a) = - y (Y, z), 2 (y, -9,) == z (y, 2); &J = 

with a linear automorphism M is encountered in a number of mechanical problems /4-61. 
linear approximation necessarily has the form 

y‘= Bz, z‘= &y 

Let ranki = 2, and rankC = et, This system then reduces to the form 

YI'= 0, YY' = Rr%*, 21' =0, zn' -= Cnya*: ye,&* E R"', 4. y%*e Rn’ 

rank B, = I,, rank C, = "I 

The 

It is therefore mandatory that the characteristic equation possesses nI= 1+n--2n*, 
.* = min &, Rx) zero roots with I+n--(~,-+n~) groups of solutions. If 1, = )"$ = n', then 
all the elementary divisors are simple and the system can only be stable in the critical case 
of m zero and n* pairs of purely imaginary roots. When a* < n, there is an automorphism L 
and, when ~*==vz, there is an automorphism N. In the case when I<&, we have Z,<N and 
only the automorphism L is possible. 

Let us now consider system (1.2) with an automorphism I%' (systems) in greater detail. 
The relationships 

must be satisfied in the case of this system which mean that the function S does not contain 
terms which are free of 9j and %j and depend solely on 5. the essentially specific critical 
case of m zero roots occurs. On the other hana, conditions (1.4) guarantee that the coef- 
ficients in the expansion of the functions g!, cp and CT; are purely imaginary. These con- 
clusions lead to a number of remarkable properties of N systems. 

1". Asymptotic stability is impossible in the case of a reversible system &. 
Actually, a family of steady-state motions g I e, n = 7 = 0 (e is a constant m-vector) 

exists in the case of such a system. 
2*. A system N is formally stable in the non-resonant case of m zero and n pairs of 

purely imaginary roots. 
Thisand also the next two properties are derived from the results /3, 7/* J*Also, see 

A.D. Bryuno, Sets of Analyticity of a Normalizing Transformation, Preprints 97 and 98, Inst. 
Prikl. Matem., Akad. Nauk SSSR, Moscow, 1974.) of an investigation into the normal forms when 
these results are applied to systems N. The automorpbism of Nis retained in the normal form 
/3f. Here, it is necessary to take the normalizing transformation with real coefficients. 
The normal form is then of the type fin writing this, we shall make use of the same variables 
as in (1.2)): 

where y‘ (P, 8) are formal series in p and % with real coefficients. Property 2O therefore 
follows from the fixed-sign integral $,z +q5 = eonst of system (1.51. 

According to /7/ (also, see the footnote), the given version (1.5) of the normal form 
guarantees the analyticity of the set A* = A,* u AZ+ [J . . . [j A,*: 

As* = (p, g: pj ~0; j f S; % = 01 (S c 1, . . ., R) 6.6) 

The set A* consists of n one-parameter families of periodic motions which are analogous 
to the Lyapunov families 181 in the case of Hamiltonian systems. 

30. In the non-resonant case of m zero and n pairs imaginary roots, system N has a 
single-parameter family (a is the parameter) of randomly periodic motions 

A0 = {p, e, : % = 0; Y, = wp (i = 1, . . ., n)} 

with a set of frequencies (ala, . . . . o,aA if o satisfies the condition 

I <s, e> I > P I 9 I-” (1.7) 
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for all integer vectors q with (q,cu)+O(p and v are certain positive constants and 
detA + 0, A=11 Ad I. 

This follows from the identity of the set A0 to a certain analytic set B /7/. The 
proof of the nilpotency of the corresponding matrix B can be obtained by a word-by-word 
repetition of the arguments presented in the case of a Hamiltonian system which has also been 
noted by Bryuno (also, see the previous footnote). 

2. %zi%lity uhen thepe are resoname~. It follows from property 2* that a problem on 
Lyapunov stability can only be solved in the resonant case on the basis of an analysis of 
the finite-order terms. The lower (third and fourth) order resonances are the most important 
in this respect. The resonance problem in the special case when n = 0 has been solved in 

/9/* 
Initially, we note an important fact. Let system (1.2) be redued to the normal form up 

to terms of the K-th order and let resonances occur in the system. The lowest order of these 
resonances is equal to II+. The function S then begins with terms of not lower than the 
K-th order with respect to 8, q and ii. Hence, if there is a third-order resonance in the 
system, then the model system, which is obtained from the normal form by discarding terms of 
higher than the second order, has a solution in which 6 = 0 and the variables n,‘ij are 
described by a subsystem which is identical to the case when m z 0. This means that the 
conclusions drawn in 19/ concerning instability remain true. Moreover, the conclusions 
regarding the stability of the model system are also unchanged as, when & = con&, the 
equations for the polar radii ra = %% are unchanged. Hence, a third-order resonance is 
solved by Theorem 1 from /9/. 

Let us now consider the fourth-order resonances 

The model system, containing terms of the third-order inclusive, has the form 

Ev' = 0 (v = 1, . . . . m) 

Here .&J, A&J, %, &Y, &u, &J and 431 
group of equations has been omitted. 

are real constants and the complex-conjugate 

Let us investigate the non-degenerate case when none of the coefficients 3% vanishes. 
In polar coordinates 

qs = fiexp (ie,), ;i, = 1/<exp (-ie,) (s = 1, . . ., n) 

system (2.1) takes the form 

(2.2) 

Tt can be shown by direct substitution that system (2.2) has the following first integrals: 

W,, = E, = h," (s = 1, . . ., m) (2.3) 
%~;-Bar~--Blrcr=ha(a=2,...,EL) 

W, Ez rp = h@ ($5 = I* + 1, . .., n) 
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where h,*, & (s = 1, . . ., m; v = 2, . . .? n) and h are arbitrary constants. Consequently, if there 
is a change in sign in the sequence of coefficients B,, . . . . 9, then it is possible to make 
up a fixed-Zign integral which is linear with respect to E,‘, . . . . Ema and rl,,..,r, from the 
first three groups of integrals (2.3) which proves the stability of the model system (2.1). 

Let all the B, be of the same sign. From the integrals of (2.3), we compose the 
function 

v (r, E, ty = w* -+ “,* WV2 -I- *$ WH? 

It is obvious that the function V will be positive-definite with respect to &, . . . . $,,, 
rl, . . ., rn if we have W+ 0 on the manifold 

W,=O(v=2,..., n), w,, = a@ = 1, . 1 .( m) (2.4) 

In (2.4), the function W has the form 

Ir 

W, = Bi*fl Bj (2 + 4II COS 0) F,*; lZ = i AaBe, II = fJ / Bj jPf’* 
I=1 a=1 i=l 

and does not vanish if 

ixi>4n (2.5) 

Hence, if all the & are of the same sign, then, when condition (2.5) is satisfied, V 
is a Lyapunov function in the case of (2.3) which satisfies the stability theorem. 

Now let the sign of the inequality in (2.5) change into the opposite sign and all the 
& be of the same sign. The model system then has an increasing solution in the form of a 

ray 

Actually, by substituting this solution into (2.2), we get 

whence 

y1 = 1, Il'e = W31, . . ., YP = &/BE; 4 i ~0s 60 f IX = I I2 1, B, sin B. > 0 

Consequently, the model system is unstable in this case. The instability of the overall 
system is proved in the same way as in /9/. 

Theorem-l. If B,fO(a=1,...,p) then, in order for the model system (2.11 to be 
stable, it is necessary and sufficient that one of the following conditions should be satisfied: 
a) a pair of coefficients Bj and B,, of opposite sign exist, b) all the coefficient B, are 
of the same sign and condition (2.5) is satisfied. 

If, however, all the & are of the same sign and the sign in inequality (2.5) is 
changed, then the seroth solution of the initial system is unstable in the Lyapunov sense. 

3. The mversibitity of iriechanicat systems. A Hamiltonian system is an important 
example of a mechanical system which is reversible in the Birkhoff sense fl/. Below, we 
consider examples of mechanical systems with an automorphism iv. 

1'. A mechanicat system under the ahion of psitiond forces. A holonomic mechanical 
system with E degrees of freedom which is constrained by stationary geometric links and 
subjected to the action of positional forces is described by the equations: 
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+ $- - f$- = 0, (4 = I, . * .I R), 
; 

2T = ) ai/ (q) q,‘q, (3.‘) 
I i,r=‘t 

where T is the kinetic energy and the generalized forces 0, axe solely aepdent on the 
cooxdinates q. System (3.11 is invariant under the linear substitution M*: t-s- -t,q-+p, q’+ 
-q”* In the neighbourhood of the equilibrium position when the characteristic equation has 
pus&y imaginary roots, the system of equations ofltheperturbed motion possesses a linear 
automorphism N (m == 0). The corresponding matrix P of the linear transformation has been 
obtained in 191. 

2O. ~o~-~o~o~~~~ ~~~~~g~~ syste?% In this case the equations of motion can also be 
taken in the form of 13.1) /la/ only here the generalized forces (when there is no dissipation) 
have the form 

The system also has a linear automorphism M* and since the supplementary forces are 
quadxatic with respect to the velocities, the linear transformation matrix P is the same 
as in /9/. 

3O. A non-hotonomic system when there are no dissipat<ve forces. The equations of motion 
of a non-holonomic system can be t&en /11/ in the Voronets foxm 

(3.2) 

(U is a force functionf and the equations of the connections axe represented in the form 

It can be seen that system (3.21, (3.3) also has a 
neighbourhood of the investigated equilibrium position 

lineax autonoxphism iv*. In the 

qr = Pros 4t - = 0 (r = 2, . * _) t), glc = qxo tx = 8 c 1, + - -t 4 

the equations of the perturbed motion have the form /II/ 

t&w cm, era ana pm and the expansions of the functions x contain terms of not lower than 
the second order in 

. . 
=1, ' - '1 xi, Xl, 1 . -7 ;tl) if one puts 

in the perturbed motion. 
Here, the functions X, are calculated using the formulae 

The characteristic equation of system (3.4) has at least JZ - 1 zero roots and, more- 
Over, a group of equations in xS corresponds to the n--t zero roots. In the linear 
approximation, 
systen (3.4) 

this group of equations reduces to the form (1.2) and the linear part of 
is invariant under the replacement t-s -_t, X+X, X*+--X‘. Consequently, when 

the number of zero roots is equal to the number of non-holonomic links and the remaining 
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roots are purely imaginary, there is an automorphism N. 

Theorem 2. When there are no dissipative forces, the equlibrium position of a non- 
holonomic system is formally stable if the number of zero roots of the characteristic equation 
when the remaining roots are purely imaginary, i_im,, is equal to the number of non-holonomic 
links and the numbers o, are linearly independent over rational numbers. 

Tkeorem 3. Under the conditions of Theorem 2 there exists 2 single-parameter families 
of periodic motions adjacent to the equlibrium position which is being considered. 

This conclusion follows from property 3O of Sect.1. 
System (3.2), (3.3) has an energy integral 8 - U = h - con&. If equations (3.4) are now 

reduced to the form of (1.5), then the function 0 - U reduces to the form 

n--l 

0-u=j~,a~5j+k~~BIPk+... 
where a, and pk are certain constants. The system of equations 

Ej = 0 (i = 1, . . ., n - I) 
n--l 

L; C.h + jil Asjpj + ,“iL, Ds&Ek + . . . = W, (a - 1) 
,=I 

(S = 1, . . ., I) 

n-1 L 

xd ajgj + ,gl bkpk + . . = h 
,=I 

therefore has a unique solution which depends on k if 

det #Oi Q= col(w,, . . ..o.), p = (B1,...,BI) (5.7) 

The following theorem therefore follows from property 4O of Sect.1. 

Theorem 4. Under the conditons of Theorem 2, in the neighbourhood of the equilibrium 
position which is being considered there exists a single-parameter family (k is the parameter) 
of random-periodic motions with a set of frequencies (01s (h), f 1 @Ia @I) adjacent to this 
equilibrium, if conditions (1.7) and (3.7) are additionally satisfied. 

Remark. If all the constants c=O in Eqs.(3.4), then the numbers R are identical 
to CO,. 

The question of the reversibility of a mechanical system as a function of the forces 
which are acting is of interest. It is clear that dissipative forces lead to the non- 
reversibility of the system. In the general case, a system under the action of positional and 
gyroscopic forces is also irreversible. This can already be seen by considering the example 
of a mechanical system with two degrees of freedom. 

Example 2. The system 

C" = W, + W? + 8% " 4a = 6% - Y41' - WI (3.8) 

(a3 BP Y and e are constants) is not gyroscopically coupled and reversible: t - - t, q - q, ‘1’ - 
- 4’ and, when e=O, it finds itself solely under the action of potential and gyroscopic 
forces and is reversible: t - - t, q1 - ql, h’ - - Yl’, % - - 413 6’ - Qn’. In the general case, when 
ye # 0, the characteristic equation 

h4 $- (y2 - a - 8, h2 -: Zyeh + E2 i- czb = 0 

does not have a root --h together with the root 1 and the system is irreversible. 

4'. A homogeneous eZZipsoid on a rough plane. A reversible system N arises not only in 
the investigation of a non-holonomic system in the neighbourhood of the equilibrium position. 
For example, in the problem which has been indicated when studying motions close to stationary 
rotations around the vertical, it is convenient to take the equations in the Appel form. 
Retaining the notation employed in /4/, we have 

IA + m (y" + ?)I p’ - mxyq’ - mrzr’ = 
(B - C) 4’ + m (x’ - yr + zq) <w rp) - mp <rwr rw’> + 

mgaZ (c” - bZ) A-'yz 

(3.9) 

2’ = yr -zq+* (9 - a2) zq + v (9 - aa) yr + -$$f- zyzp 

(PQ’7 =YG ABC, abc) 
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where 

and the coordinates 

This system of 

0 = (p, 9, r), rp = (2, y, 4, qL’ = (x-t Y’, 4 

are linked by the relationship. 

x2/a" + y2/b2 + z2/‘c2 = 1 

equations has the particular solution 

p = q = 0, r = 0 = con&. 5 = y = 0, 2 = -c 

which corresponds to the rotation of the ellipsoid about the vertical and represents a single- 
parameter family (0 is the parameter). 

An analysis of the system shows the presence of a linear automorphism M: i!-+ --t, (2, p9 2, 
r) + (59 PI z7 r), (Y, a)+ (-Yt -q). The equations of the perturbed motion are derived from (3.9) 
by replacing r by r + o and r?. by z-c. Consequently, these equations have the above- 
mentioned automorphism M and are a system of the form of (1.3). Here n = 2, 1=2, n, = 1, = 2 
and the matrices B, and C, have the form 

a,, = 0 
6~8 -55a*- bs 

b2 + W ’ %z = 
5 cw~(b*--a”)+g(b*-cC) 

ba (b* + 6L) 

Hence, in the critical case of two zero and two pairs of purely imaginary roots, all 
the conclusion of Sect.1 hold and, in particular, there exist two families of periodic motions 
close to stationary rotations. We note that the stability when there are lower-order 
resonances in this problem has been investigated in /12, 13/. 

50. A heavy solid with a fixed point. The Euler-Poisson equations of this problem t/14/. 
p.177) 

A% + (C--B)v = P(Y,z, - Y~Y,), 
dy1 
-==Y2-94y3 

(Pqr, y1v2ys, ABC, xcYrz,? 

represent a reversible system with the linear automorphism: 

t+ --t, (P, Ql P)-t l--P* -_p, -r), (ul, YzF Y3) -+ (VI, Ys~ Y3b 

6O. An wlbounded three-body problem. The Routh-Lyapunov equations for this classical 
problem incelestialmechanics have the form t/15/, p.397) 

g -rl@z2 + ~a*) + f&o + m&F@,) + fm,[F(r,)cos$ + F(A)cosrp,l=O 

* -$ (r1*09) + r10203 + jmz [F (rz) sin 'Ic) -F(A) sin cp,] = 0 
1 d -- 
r, dt (rlb2) - rpp3 = 0 

A'= r12 -f rz2- 2r,r,cos$, sinrp,=+sin$ (i =1,2) 

01 *=o,cosrl,+o,sin$, w,*==--w,sin$+o,cos+, 03*=03+$' 

(the second group of differential equations is obtained from the equations presented above 
by replacing (rl, ml, %, %, w and V) by (r~, ml*, %*r OS*, 
is a certain function of the reciprocal distance r). 

--cp,, -q) and cm,, mz) by (m,, ml). F (r) 
The system is reversible with the 

linear automorphism t -' --t, (rl, r,, y) --f (rlr r2, $,!, (wlr 02, w3) + (--or, --wz, -wg). 

4. Ezizmpte. The problem of the relative equilibrium and regular precession of a geo- 
stationary satellite 15, 6/ may be kited as a further example of a complex multiparameter 
mechanical system which leads to the investigation of a system with a linear automorphism N. 
However, this problem is the subject of a separate treatment. Here, we shall confine ourselves 
to the treatment of an illustrative example. 

In the case of a model of an elastic rod under the action of a servoforce /9/ we have a 
system under the action of positional forces. The linear problem has been analysed /3/, the 
transformation to the normal form has been obtained and the lower order resonances have been 
investigated. Retaining the notation employed in /9/, let us consider the non-resonant case. 
In this case, non-linear normalization is carried out in the complex-conjugate variables s 
and F which are related to the angles 91 and (pa of deviation of the rod from the equilibrium 
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position and their velocities by the relationships 

The equations 
form 

Q’ = 2 (Co,1 - lo**) -- Wn + 017 (ZI - 11) - (ha + 01~) (za- rz)] +. . 

for the radii rl = z$,, rp = Z& and the polar angles e1 = arg x1, 8% = arg zp have the 

rl' = 0, ra' = 0, 8,' = 0, + E,(Tl, T*), es' = 0, + e, (r,, rJ 

Hence, two single-parameter families of periodic motions exist close to the equilibrium 
position. The first family is defined by the relationship 

and the second corresponds to the replacement of O, by % % by % el (rle. 0) by e, (0, r& and r10 
by r~ (rla and rsO are the initial values of rl and rJ. These oscillations are close to the 
vibrations of the linear system and, moreover, 
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